Integrated 3D pedestal, SOL and divertor
modeling - a critical step for solving the ITER
ELM and PMI problems
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ELMs are the most serious issue facing ITER
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® Core performance is tightly coupled to > Directly by reducing pedestal height
pedestal height by stiff radial transport > Indirectly by affecting pedestal stability

> Both the uncertainty in the transport models

® - . -
and in the pedestal T, affects the ELMs limit the divertor plate

predictibality of Q,,;, ITER lifetime
® FELMs provide a steady-state operating > Impulsive heat flux erodes
regime with good energy/particle exhaust material
and acceptable core impurity levels D"'—D
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Experiments in DIII-D show that large ELMs can
be suppressed with a stochastic boundary

® In these experiments the high impulsive All the db, sources must be included
loading due to ELMs is replaced with low in the ELM and PMI modeling

level, long duration, oscillations that: : :
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> maintain good steady-state heat and
particle exhaust,
> eliminate large PMI erosion rates and

> retain high core confinement with
high performance pedestal profiles

® Field line integration (FLI) modeling

l ,. -;f’" (inside vacuum)

sl st +— MHD Control C-Coil
gl e ;h& {outside vacuum)

T e T L e S e e L L L

. MHD Control I-Coil
(inside vacuum)

" stochastic Boundary Coil

results show that both “field errors” and *- (proposed)
external coil perturbations play an Poloidal
important role in controlling the ELMs E'E_Eld
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The structure of the stochastic layer is characterized by

Its width Dy ., and poloidal magnetic flux loss Dy j

Stochastic Boundary Experiment, g115467.03400.129
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® Rectangular Poincaré plot showing a TRIP3D FLI calculation of the
magnetic structure in DIII-D pedestal with measured error fields only
(no C- or I-coil).

TRIP3D modeling (no plasma response included)
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The correction colil (C-coil) can create a wide stochastic
layer compared to that produced by intrinsic field errors
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The C-coil has a substantial impact on ELMs in identical
discharges with and without coil current

(a.u) X10" (a.u.) X10"® lecoi (kA)

c79 113991

=o=nNo
coooo

c139 113991

~¢199 11399

—

[ ]
pow P
o o 9O

c139 113992
c199 113992

©79 113992 }/;ﬁf

- C-coil on

o4 Mw o=
=== ===

1400

- C-coil off ‘ ‘

1600 1800 2000
time (ms)

At = 2500-3500 (phd04f)

o
=
=]
o

shot 113992 (C-coil off)

0.00

ot
=]
=]
]

shot 113991 (C-coil on)

Autopower of D I_"IuP'EJIr Hz)

=]

#] 50 100 150 200 250
D¢, frequency (Hz)

The ELM free period is longer and the ELM frequency is lower with the C-coil
operating in the standard error field correction mode.

The ELMs are more irregular without the C-coil and have a broader power
spectrum.
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The I-coll produces a thinner stochastic layer than the
C-coll but is more efficient for suppressing large ELMs
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TRIP3D modeling (no plasma response included)

® The toroidal phase of

the I-coil perturbation
has a small effect on
the stochastic layer due
to a difference in the
mixing with intrinsic
error fields, with Df =0,
Dy ,,=12.6% and

Dy n=1.7% while with

Df =60°, Dy ,,=10.2%
and Dy 4=0.7%.

® Although the stochastic

layer is thinner with the
I-coil the effect on ELMs
is larger.
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Large ELMs are suppressed without degrading the core

confinement during the |-coil pulse

® Type I ELMs suppressed in high performance ELMing H-modes (b, ,eH
= 4.2) with and edge resonant perturbation.
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An integrated 3D modeling approach is needed

to address tokamak ELM and PMI issues

Experimental data shows that edge 3D effects become significantly more
important in high confinement tokamak regimes, particularly with respect to:

> ELM control and PMI issues critical for ITER or advanced materials scenarios

® An integrated 3D modeling approach is need for the pedestal, SOL and

divertor in order to address ELM and PMI issues critical for ITER

Many of the numerical tools required to start exploring avenues for an
integrated 3D modeling approach already exist within the PMI group:

> UEDGE and b2.5 (axisymmetric 2D background edge/SOL/divertor plasma fluid
with kinetic hydrogen neutrals)

WBC (kinetic 3D sputtering and near surface transport)

MCI (kinetic edge/SOL/divertor 3D impurity transport and atomic physics)

TRIP3D (3D magnetic field line integration)

E3D (kinetic 3D heat and momentum transport)

A dedicated effort is now needed to couple these codes and to apply them to

critical PMI issues facing ITER as well as for developing advanced materials
scenarios relevant to future fusion applications
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